Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 466: 115000, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38631659

RESUMO

The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.


Assuntos
Envelhecimento , Encéfalo , Ácido Hidroxi-Indolacético , Monoaminoxidase , Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Caracteres Sexuais , Triptofano Hidroxilase , Peixe-Zebra , Animais , Serotonina/metabolismo , Masculino , Feminino , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Encéfalo/metabolismo , Monoaminoxidase/metabolismo , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/genética , Ácido Hidroxi-Indolacético/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Atividade Motora/fisiologia , Comportamento Animal/fisiologia , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética
2.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105199

RESUMO

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Assuntos
Biossíntese de Proteínas , Grânulos de Estresse , RNA Mensageiro/metabolismo , Grânulos Citoplasmáticos , Ribossomos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Ligação a RNA/metabolismo
3.
Front Immunol ; 14: 1098302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865543

RESUMO

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Assuntos
Toxinas Botulínicas Tipo A , COVID-19 , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Anticorpos de Domínio Único/genética , Pandemias , Relação Dose-Resposta a Droga
4.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834593

RESUMO

The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.


Assuntos
Ciprinodontiformes , Fundulidae , Animais , Masculino , Feminino , Serotonina , Triptofano , Envelhecimento , Encéfalo , Triptofano Hidroxilase , Monoaminoxidase
5.
Nucleic Acids Res ; 51(2): 908-918, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36583341

RESUMO

Polyribosomes, the groups of ribosomes simultaneously translating a single mRNA molecule, are very common in both, prokaryotic and eukaryotic cells. Even in early EM studies, polyribosomes have been shown to possess various spatial conformations, including a ring-shaped configuration which was considered to be functionally important. However, a recent in situ cryo-ET analysis of predominant regular inter-ribosome contacts did not confirm the abundance of ring-shaped polyribosomes in a cell cytoplasm. To address this discrepancy, here we analyzed the cryo-ET structure of polyribosomes in diluted lysates of HeLa cells. It was shown that the vast majority of the ribosomes were combined into polysomes and were proven to be translationally active. Tomogram analysis revealed that circular polyribosomes are indeed very common in the cytoplasm, but they mostly possess pseudo-regular structures without specific inter-ribosomal contacts. Although the size of polyribosomes varied widely, most circular polysomes were relatively small in size (4-8 ribosomes). Our results confirm the recent data that it is cellular mRNAs with short ORF that most commonly form circular structures providing an enhancement of translation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Humanos , Células HeLa , Polirribossomos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Conformação Molecular
6.
Biochemistry (Mosc) ; 86(9): 1060-1094, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565312

RESUMO

Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.


Assuntos
Células Eucarióticas/virologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Animais , Células Eucarióticas/fisiologia , Humanos , Sítios Internos de Entrada Ribossomal/fisiologia , RNA Circular/genética , Proteínas Virais/fisiologia
7.
Front Cell Dev Biol ; 9: 698658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307376

RESUMO

Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment. We developed a gentle microinjection procedure for fluorescent reporter proteins allowing a direct non-invasive study of protein transport in living cells. As a proof of principle, we visualized potential-dependent protein import into mitochondria inside intact cells in real-time. We validated that our approach does not distort mitochondrial morphology and preserves the endogenous expression system as well as mitochondrial protein translocation machinery. We observed that a release of nascent polypeptides chains from actively translating cellular ribosomes by puromycin strongly increased the import rate of the microinjected pre-protein. This suggests that a substantial amount of mitochondrial translocase complexes was involved in co-translational protein import of endogenously expressed pre-proteins. Our protein microinjection method opens new possibilities to study the role of mitochondrial protein import in cell models of various pathological conditions as well as aging processes.

8.
Behav Brain Res ; 359: 446-456, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447239

RESUMO

Lethal yellow (AY) mutation causes obesity and type-2 diabetes in mice. Here we studied the effect of the AY mutation on the brain and behavior. The experiments were carried out on adult (11-12 weeks old) males of AY/a mice and their wild-type littermates (a/a). Mice of AY/a and a/a genotypes did not differ in their home cage activity, sleep, food and water consumption, learning ability in the Morris water maze, anxiety in the open field and elevated plus-maze, as well as in the level of monoamines, metabolites and some genes expression in the brain. At the same time, the fat mass, depressive-like immobility in the forced swim and tail suspension tests were significantly increased in AY/a mice compared with a/a ones. Magnetic resonance imaging revealed a significant reduction of cortex volume in AY/a mice. The level of mRNA of Ptpn5 gene encoding striatal enriched tyrosine phosphatase in the frontal cortex of AY/a mice was significantly elevated compared with their wild-type littermates. This is the first report on the alterations in the brain and behavior in the AY/a mouse line. It is tempting to speculate that this mouse line can serve as a new and useful preclinical model to study neurobehavioral complications associated with obesity and type-2 diabetes.


Assuntos
Proteína Agouti Sinalizadora/genética , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Mutação , Proteína Agouti Sinalizadora/metabolismo , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Associação Genética , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/genética , Atividade Motora/fisiologia , Tamanho do Órgão , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , RNA Mensageiro/metabolismo
9.
J Inorg Biochem ; 175: 190-197, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28756175

RESUMO

New copper(II) complexes of 2-alkylthio-5-arylmethylene-4H-imidazolin-4-ones: (5Z)-2-(methylsulfanyl)-3-(prop-2-en-1-yl)-5-(pyridin-2-ylmethylidene)-3,5-dihydro-4H-imidazol-4-one) (1a), (5Z,5'Z)-2,2'-(ethan-1,2-diyldisulfanyldiyl)bis(5-(2-pyridilmethylen)-3-allyl-3,5-dihydo-4Н-imidazole-4-one) (2a) and (5Z,5'Z)-3,3'-hexan-1,6-diylbis[5-(2-pyridilmethylen)-2-methylthiotetrahydro-4Н-imidazole-4-one)] (3a) were synthesized as possible anticancer drugs. Their structures were characterized by 1H NMR spectroscopy, elemental analysis, and X-ray crystallography. The composition of the complexes were found for 1a (Cu:L=1:1), 2a (Cu:L=2:1), and 3a (Cu:L=2:1). The chelation constants were found by competitive complexation with ethylenediamine tetraacetate: 1a (6.7±0.6)×1015M-1, 2a=(4.9±0.4)×1019M-2, and 3a (5.7±0.5)×1019M-2. Supramolecular binding with calf thymus DNA by competitive ethidium bromide quenching was made for complex 2a as the most promising anticancer model, the Stern-Volmer constants were found to be KSV=(8.0±0.4)×106M-1, Kq=(6.5±0.4)×105M-1. The binding of the complex 2a to BSA was made by the Scatchard method, the value of the constant is Kb=(1.9±0.2)×106M-1.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Cobre/química , DNA/química , Soroalbumina Bovina/química , Tioidantoínas/química , Animais , Bovinos
10.
Int J Syst Evol Microbiol ; 58(Pt 10): 2459-64, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18842875

RESUMO

Strain MS 6(T) was obtained from a microoxic enrichment with a soda soil sample from north-eastern Mongolia in nitrogen-free alkaline medium at pH 10. The isolate had clostridia-like motile cells and formed ellipsoid endospores. It was able to fix dinitrogen gas growing on nitrogen-free alkaline medium. Strain MS 6(T) was a strictly fermentative bacterium without a respiratory chain, although it had a high catalase activity and tolerated aerobic conditions. It was an obligate alkaliphile with a pH range for growth between 7.5 and 10.6 (optimum at 9.0-9.5). Growth and nitrogen fixation at pH 10 were possible at a total salt content of up to 1.2 M Na(+) (optimum at 0.2-0.3 M). The dominant cellular fatty acids included C(16 : 0), C(16 : 1)omega7, anteiso-C(15 : 0) and C(14 : 0). The dominant isoprenoid quinone was MK-7. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. 16S rRNA gene sequencing identified strain MS 6(T) as a member of the genus Bacillus. Its closest relative was Bacillus arseniciselenatis E1H(T). The key functional nitrogenase gene nifH was detected in both strain MS 6(T) and its close relative and these strains formed a novel lineage in the nifH gene family. On the basis of these phenotypic and genetic comparisons, strain MS 6(T) is proposed to represent a novel species of the genus Bacillus, Bacillus alkalidiazotrophicus sp. nov. with the type strain MS 6(T) (=NCCB 100213(T)=UNIQEM U377(T)).


Assuntos
Bacillus/classificação , Bacillus/genética , Microbiologia do Solo , Bacillus/química , Bacillus/isolamento & purificação , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Genes Bacterianos , Genes de RNAr , Dados de Sequência Molecular , Mongólia , Fixação de Nitrogênio , Oxirredutases/genética , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bicarbonato de Sódio
11.
FEMS Microbiol Ecol ; 65(3): 425-33, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18616587

RESUMO

Nitrogen fixation (NF) potential was measured in more than 40 samples of soda solonchak soils with the pH of water extract between 9.5 and 11.0 collected in several locations of Central Asia and in Egypt, using the acetylene reduction method. NF was detected in most of the samples. Maximal rates were observed under microaerophilic-anaerobic conditions with glucose as a substrate. In most cases, the NF negatively correlated with salt content and alkalinity. Five enrichments at pH 10 under micro-oxic conditions with glucose resulted in stable haloalkaliphilic mixed cultures, with diazotrophic component(s) active up to 2.0-3.0 M total Na(+). The cultures were dominated by Gram-positive spore-forming bacteria. Molecular cloning of nifH genes demonstrated the presence of two phylogenetic lineages of diazotrophs in the enrichments affiliated with the low-GC Gram-positive bacteria (in rRNA groups 1 and 6 of bacilli and in Clostridiales). Isolation of pure cultures of haloalkaliphilic diazotrophs from micro-oxic enrichments yielded nine strains, comprising two phylogenetic lineages. Most of the isolates (eight) were affiliated with the aerotolerant fermentative haloalkaliphilic bacterium Amphibacillus tropicus and a single strain clustered with the obligately anaerobic haloalkaliphile Bacillus arseniciselenatis. Diazotrophy has never been recognized previously in these groups of Gram-positive bacteria. Overall, the results demonstrated the existence, in soda solonchak soils, of a novel group of free-living fermentative diazotrophic bacteria active at extremely haloalkaline conditions.


Assuntos
Bactérias/isolamento & purificação , Fixação de Nitrogênio , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Carbonatos/metabolismo , Meios de Cultura , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genes Bacterianos , Genes de RNAr , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...